The sigma ligand, igmesine, inhibits cholera toxin and Escherichia coli enterotoxin induced jejunal secretion in the rat.
نویسندگان
چکیده
BACKGROUND Cholera toxin, and Escherichia coli heat labile (LT) and heat stable (STa) enterotoxins induce small intestinal secretion in part by activating enteric nerves. Igmesine is a novel sigma receptor ligand that inhibits neurally mediated secretion. AIMS To assess the antisecretory potential of igmesine in cholera toxin, LT, and STa induced water and electrolyte secretion using an in vivo rat model of jejunal perfusion. METHODS After pretreatment with igmesine, 0.03-10 mg/kg intravenously, jejunal segments of anaesthetised, adult male Wistar rats were incubated with cholera toxin (25 microg), LT (25 microg), or saline. Jejunal perfusion with a plasma electrolyte solution containing a non-absorbable marker was undertaken. In some cases 200 microg/l STa was added to the perfusate. After equilibration, net water and electrolyte movement was determined. In additional experiments rats received igmesine, intravenously or intrajejunally, after exposure to cholera toxin. RESULTS Cholera toxin induced net water secretion was inhibited by 1 mg/kg igmesine (median -120 versus -31 microl/min/g, p<0.001). LT and STa induced secretion were also inhibited by 1 mg/kg igmesine (-90 versus -56, p<0.03; and -76 versus -29, p<0.01, respectively). Igmesine reduced established cholera toxin induced secretion. CONCLUSION The sigma ligand, igmesine, inhibits neurally mediated enterotoxigenic secretion. Its ability to inhibit established secretion makes it an agent with therapeutic potential.
منابع مشابه
Neurokinin 1 and 2 receptors mediate cholera toxin secretion in rat jejunum.
BACKGROUND & AIMS Substance P, a member of the tachykinin family, is a prosecretory neuropeptide distributed widely throughout the enteric nervous system. Implicated in inflammatory states, its role in enterotoxigenic water and electrolyte secretion is unclear. We assessed the effect of substance P antagonists and neurokinin receptor antagonists on cholera toxin-, Escherichia coli heat-labile e...
متن کاملExpression of Recombinant Protein B Subunit Pili from Vibrio Cholera
Background & Aims: Vibrio cholerae is a gram-negative bacterial pathogen that causes cholera disease. Following ingestion by a host and entry into the upper intestine, V. cholera colonizes and begins to emit enterotoxin. One of the most pathogenic factors of Vibrio cholera is toxin-coregulated pili (TCP). ToxinCoregulated pili is as the primary factor requiered for the colonization and insisten...
متن کاملEstrogen inhibits chloride secretion caused by cholera and Escherichia coli enterotoxins in female rat distal colon.
Excessive Cl(-) secretion is the driving force for secretory diarrhea. 17β-Estradiol has been shown to inhibit Cl(-) secretion in rat distal colon through a nongenomic pathway. We examined whether 17β-estradiol inhibits Cl(-) secretion in an animal model of secretory diarrhea and the downstream effectors involved. The effect of 17β-estradiol on cholera toxin and heat-stable enterotoxin induced ...
متن کاملExpression and Secretion of Human Granulocyte Macrophage-Colony Stimulating Factor Using Escherichia coli Enterotoxin I Signal Sequence
With the aim of the secretion of human granulocyte macrophage-colony stimulating factor (hGM-CSF) in Escherichia coli, hGM-CSF cDNA was fused in-frame next to the signal sequence of ST toxin (ST-I) of exteroxigenic E. coli, containing 53 or 19 amino acids of signal peptide. The fused STsig::hGM-CSF coding fragments were inserted into a T7-based expression plasmid. The recombinant plasmids were ...
متن کاملVagotomy inhibits the jejunal fluid secretion activated by luminal ileal Escherichia coli STa in the rat in vivo.
BACKGROUND Escherichia coli heat stable enterotoxin (STa) is a major cause of secretory diarrhoea in humans. AIMS To assess the effects of instilling STa into the ileum on remote fluid secretion in the jejunum and colon in rats in vivo by a gravimetric technique. METHODS AND RESULTS Ileal STa (55 ng/ml) stimulated fluid secretion in both ileal and jejunal loops but not in the colon. The flu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Gut
دوره 45 4 شماره
صفحات -
تاریخ انتشار 1999